Pt. 60, App. A-3, Meth. 4 and health practices and determine the applicability of regulatory limitations prior to performing this test method. #### 6.0 Equipment and Supplies - 6.1 Reference Method. A schematic of the sampling train used in this reference method is shown in Figure 4–1. - 6.1.1 Probe. Stainless steel or glass tubing, sufficiently heated to prevent water condensation, and equipped with a filter, either in-stack (e.g., a plug of glass wool inserted into the end of the probe) or heated out-of-stack (e.g., as described in Method 5), to remove particulate matter. When stack conditions permit, other metals or plastic tubing may be used for the probe, subject to the approval of the Administrator. - 6.1.2 Condenser. Same as Method 5, Section 6.1.1.8 - 6.1.3 Cooling System. An ice bath container, crushed ice, and water (or equivalent), to aid in condensing moisture. - 6.1.4 Metering System. Same as in Method 5, Section 6.1.1.9, except do not use sampling systems designed for flow rates higher than 0.0283 m³/min (1.0 cfm). Other metering systems, capable of maintaining a constant sampling rate to within 10 percent and determining sample gas volume to within 2 percent, may be used, subject to the approval of the Administrator. - 6.1.5 Barometer and Graduated Cylinder and/or Balance. Same as Method 5, Sections 6.1.2 and 6.2.5, respectively. - 6.2. Approximation Method. A schematic of the sampling train used in this approximation method is shown in Figure 4–2. - 6.2.1 Probe. Same as Section 6.1.1. - 6.2.2 Condenser. Two midget impingers, each with 30-ml capacity, or equivalent. - 6.2.3 Cooling System. Ice bath container, crushed ice, and water, to aid in condensing moisture in impingers. - 6.2.4 Drying Tube. Tube packed with new or regenerated 6- to 16-mesh indicating-type silica gel (or equivalent desiccant), to dry the sample gas and to protect the meter and pump. - 6.2.5 Valve. Needle valve, to regulate the sample gas flow rate. - 6.2.6 Pump. Leak-free, diaphragm type, or equivalent, to pull the gas sample through the train. - 6.2.7 Volume Meter. Dry gas meter, sufficiently accurate to measure the sample volume to within 2 percent, and calibrated over the range of flow rates and conditions actually encountered during sampling. - 6.2.8 Rate Meter. Rotameter, or equivalent, to measure the flow range from 0 to 3 liters/min (0 to 0.11 cfm). - 6.2.9 Graduated Cylinder. 25-ml. - 6.2.10 Barometer. Same as Method 5, Section 6.1.2. - 6.2.11 Vacuum Gauge. At least 760-mm (30-in.) Hg gauge, to be used for the sampling leak check. - 7.0 Reagents and Standards [Reserved] - 8.0 Sample Collection, Preservation, Transport, and Storage - 8.1 Reference Method. The following procedure is intended for a condenser system (such as the impinger system described in Section 6.1.1.8 of Method 5) incorporating volumetric analysis to measure the condensed moisture, and silica gel and gravimetric analysis to measure the moisture leaving the condenser. - 8.1.1 Preliminary Determinations. - 8.1.1.1 Unless otherwise specified by the Administrator, a minimum of eight traverse points shall be used for circular stacks having diameters less than 0.61 m (24 in.), a minimum of nine points shall be used for rectangular stacks having equivalent diameters less than 0.61 m (24 in.), and a minimum of twelve traverse points shall be used in all other cases. The traverse points shall be located according to Method 1. The use of fewer points is subject to the approval of the Administrator. Select a suitable probe and probe length such that all traverse points can be sampled. Consider sampling from opposite sides of the stack (four total sampling ports) for large stacks, to permit use of shorter probe lengths. Mark the probe with heat resistant tape or by some other method to denote the proper distance into the stack or duct for each sampling point. - 8.1.1.2 Select a total sampling time such that a minimum total gas volume of 0.60 scm (21 scf) will be collected, at a rate no greater than 0.021 m³/min (0.75 cfm). When both moisture content and pollutant emission rate are to be determined, the moisture determination shall be simultaneous with, and for the same total length of time as, the pollutant emission rate run, unless otherwise specified in an applicable subpart of the standards. - 8.1.2 Preparation of Sampling Train. - 8.1.2.1 Place known volumes of water in the first two impingers; alternatively, transfer water into the first two impingers and record the weight of each impinger (plus water) to the nearest 0.5 g. Weigh and record the weight of the silica gel to the nearest 0.5 g, and transfer the silica gel to the fourth impinger; alternatively, the silica gel may first be transferred to the impinger, and the weight of the silica gel plus impinger recorded. - 8.1.2.2 Set up the sampling train as shown in Figure 4-1. Turn on the probe heater and (if applicable) the filter heating system to temperatures of approximately 120 $^{\circ}$ C (248 $^{\circ}$ F), to prevent water condensation ahead of the condenser. Allow time for the temperatures to stabilize. Place crushed ice and water in the ice bath container. ## **Environmental Protection Agency** 8.1.3 Leak Check Procedures. It is recommended, but not required, that the volume metering system and sampling train be leak-checked as follows: 8.1.3.1 Metering System. Same as Method 5, Section 8.4.1. 8.1.3.2 Sampling Train. Disconnect the probe from the first impinger or (if applicable) from the filter holder. Plug the inlet to the first impinger (or filter holder), and pull a 380 mm (15 in.) Hg vacuum. A lower vacuum may be used, provided that it is not exceeded during the test. A leakage rate in excess of 4 percent of the average sampling rate or 0.00057 m³/min (0.020 cfm), whichever is less, is unacceptable. Following the leak check, reconnect the probe to the sampling train. 8.1.4 Sampling Train Operation. During the sampling run, maintain a sampling rate within 10 percent of constant rate, or as specified by the Administrator. For each run, record the data required on a data sheet similar to that shown in Figure 4-3. Be sure to record the dry gas meter reading at the beginning and end of each sampling time increment and whenever sampling is halted. Take other appropriate readings at each sample point at least once during each time increment. NOTE: When Method 4 is used concurrently with an isokinetic method (e.g., Method 5) the sampling rate should be maintained at isokinetic conditions rather than 10 percent of constant rate. 8.1.4.1 To begin sampling, position the probe tip at the first traverse point. Immediately start the pump, and adjust the flow to the desired rate. Traverse the cross section, sampling at each traverse point for an equal length of time. Add more ice and, if necessary, salt to maintain a temperature of less than 20 °C (68 °F) at the silica gel outlet. 8.1.4.2 After collecting the sample, disconnect the probe from the first impinger (or from the filter holder), and conduct a leak check (mandatory) of the sampling train as described in Section 8.1.3.2. Record the leak rate. If the leakage rate exceeds the allowable rate, either reject the test results or correct the sample volume as in Section 12.3 of Method 5. 8.2 Approximation Method. NOTE: The approximation method described below is presented only as a suggested method (see Section 2.0). 8.2.1 Place exactly 5 ml water in each impinger. Leak check the sampling train as follows: Temporarily insert a vacuum gauge at or near the probe inlet. Then, plug the probe inlet and pull a vacuum of at least 250 mm (10 in.) Hg. Note the time rate of change of the dry gas meter dial; alternatively, a rotameter (0 to 40 ml/min) may be temporarily attached to the dry gas meter outlet to determine the leakage rate. A leak rate not in excess of 2 percent of the average sampling rate is acceptable. NOTE: Release the probe inlet plug slowly before turning off the pump. 8.2.2 Connect the probe, insert it into the stack, and sample at a constant rate of 2 liters/min (0.071 cfm). Continue sampling until the dry gas meter registers about 30 liters (1.1 ft³) or until visible liquid droplets are carried over from the first impinger to the second. Record temperature, pressure, and dry gas meter readings as indicated by Figure 4-4. ## 9.0 Quality Control 9.1 Miscellaneous Quality Control Measures. | Section | Quality control measure | Effect | |-----------------|--|---| | Section 8.1.1.4 | Leak rate of the sampling system cannot exceed four percent of the average sampling rate or 0.00057 m³/min (0.20 cfm). | Ensures the accuracy of the volume of gas sampled. (Reference Method) | | Section 8.2.1 | | Ensures the accuracy of the volume of gas sampled. (Approximation Method) | 9.2 Volume Metering System Checks. Same as Method 5, Section 9.2. ### 10.0 Calibration and Standardization Note: Maintain a laboratory log of all calibrations. 10.1 Reference Method. Calibrate the metering system, temperature sensors, and barometer according to Method 5, Sections 10.3, 10.5, and 10.6, respectively. 10.2 Approximation Method. Calibrate the metering system and the barometer accord- ing to Method 6, Section 10.1 and Method 5, Section 10.6, respectively. # 11.0 Analytical Procedure 11.1 Reference Method. Measure the volume of the moisture condensed in each of the impingers to the nearest ml. Alternatively, if the impingers were weighed prior to sampling, weigh the impingers after sampling and record the difference in weight to the nearest 0.5 g. Determine the increase in